21 research outputs found

    An emerging field: An evaluation of biomedical graduate student and postdoctoral education and training research across seven decades

    Get PDF
    Biomedical graduate student and postdoctoral education and training research has expanded greatly over the last seven decades, leading to increased publications and the emergence of a field. The goal of this study was to analyze this growth by performing a cross-sectional bibliometric analysis using a systematic approach to better understand the publishing trends (including historical vs. emerging themes and research priorities); depth, structure, and evidence-basis of content; and venues for publication. The analysis documented a dramatic increase in biomedical trainee-related publications over time and showed that this area of research is maturing into its own independent field. Results demonstrated that the most frequently published article types in this field are shorter editorial and opinion pieces, and that evidence-based articles are less numerous. However, if current trends continue, projections indicate that by the year 2035, evidence-based articles will be the dominating article type published in this field. Most frequently published topics included career outcomes and workforce characterization and professional development. In recent years, the most cited articles were publications focused on diversity, equity, and inclusion, career outcomes and workforce characterization, and wellness. This study also shows that although a small subset of journals publishes most of this literature, publications are distributed diffusely across a wide range of journals and that surprisingly 68% of these journals have published only a single article on the topic. Further, we noted that the assignment of author- and index-supplied keywords was variable and inconsistent and speculate that this could create challenges to conducting comprehensive literature searches. Recommendations to address this include establishing standard keyword assignment criteria and proposing new index-supplied keywords to improve accessibility of research findings. These changes will be important for bringing visibility of this literature to our community, institutional leaders, national trainee organizations, and funding agencies

    Formation of Toxic Oligomeric α-Synuclein Species in Living Cells

    Get PDF
    Background: Misfolding, oligomerization, and fibrillization of α-synuclein are thought to be central events in the onset and progression of Parkinson's disease (PD) and related disorders. Although fibrillar α-synuclein is a major component of Lewy bodies (LBs), recent data implicate prefibrillar, oligomeric intermediates as the toxic species. However, to date, oligomeric species have not been identified in living cells. Methodology/Principal Findings: Here we used bimolecular fluorescence complementation (BiFC) to directly visualize α-synuclein oligomerization in living cells, allowing us to study the initial events leading to α-synuclein oligomerization, the precursor to aggregate formation. This novel assay provides us with a tool with which to investigate how manipulations affecting α-synuclein aggregation affect the process over time. Stabilization of α-synuclein oligomers via BiFC results in increased cytotoxicity, which can be rescued by Hsp70 in a process that reduces the formation of α-synuclein oligomers. Introduction of PD-associated mutations in α-synuclein did not affect oligomer formation but the biochemical properties of the mutant α-synuclein oligomers differ from those of wild type α-synuclein. Conclusions/Significance: This novel application of the BiFC assay to the study of the molecular basis of neurodegenerative disorders enabled the direct visualization of α-synuclein oligomeric species in living cells and its modulation by Hsp70, constituting a novel important tool in the search for therapeutics for synucleinopathies

    PRISMA 2020 explanation and elaboration : updated guidance and exemplars for reporting systematic reviews

    Get PDF
    The methods and results of systematic reviews should be reported in sufficient detail to allow users to assess the trustworthiness and applicability of the review findings. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement was developed to facilitate transparent and complete reporting of systematic reviews and has been updated (to PRISMA 2020) to reflect recent advances in systematic review methodology and terminology. Here, we present the explanation and elaboration paper for PRISMA 2020, where we explain why reporting of each item is recommended, present bullet points that detail the reporting recommendations, and present examples from published reviews. We hope that changes to the content and structure of PRISMA 2020 will facilitate uptake of the guideline and lead to more transparent, complete, and accurate reporting of systematic reviews

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    An emerging field: An evaluation of biomedical graduate student and postdoctoral education and training research across seven decades.

    No full text
    Biomedical graduate student and postdoctoral education and training research has expanded greatly over the last seven decades, leading to increased publications and the emergence of a field. The goal of this study was to analyze this growth by performing a cross-sectional bibliometric analysis using a systematic approach to better understand the publishing trends (including historical vs. emerging themes and research priorities); depth, structure, and evidence-basis of content; and venues for publication. The analysis documented a dramatic increase in biomedical trainee-related publications over time and showed that this area of research is maturing into its own independent field. Results demonstrated that the most frequently published article types in this field are shorter editorial and opinion pieces, and that evidence-based articles are less numerous. However, if current trends continue, projections indicate that by the year 2035, evidence-based articles will be the dominating article type published in this field. Most frequently published topics included career outcomes and workforce characterization and professional development. In recent years, the most cited articles were publications focused on diversity, equity, and inclusion, career outcomes and workforce characterization, and wellness. This study also shows that although a small subset of journals publishes most of this literature, publications are distributed diffusely across a wide range of journals and that surprisingly 68% of these journals have published only a single article on the topic. Further, we noted that the assignment of author- and index-supplied keywords was variable and inconsistent and speculate that this could create challenges to conducting comprehensive literature searches. Recommendations to address this include establishing standard keyword assignment criteria and proposing new index-supplied keywords to improve accessibility of research findings. These changes will be important for bringing visibility of this literature to our community, institutional leaders, national trainee organizations, and funding agencies

    Hsp70 reduces aSyn oligomerization and toxicity in living cells.

    No full text
    <p>A. H4 cells were co-transfected with WT aSyn or GN-link-aSyn+aSynGC and either with an empty vector or with Hsp70. Cytotoxicity was reduced by Hsp70 (t-test, n = 3, p<0.001). B. Confocal microscopy analysis showing that overexpression of Hsp70 reduces aSyn oligomerization (Scale bar, 50 µm). C. Quantification of the pixel intensity of the same cells as in B showing a statistically significant reduction in fluorescence in cells overexpressing Hsp70 (t-test, p<0.0001). D. Immunoblot of a native PAGE of cells co-transfected with GN-link-aSyn+aSynGC and either an empty vector of with Hsp70 showing a strong reduction in high molecular weight oligomeric species by Hsp70. E. Immunoblot of an SDS-PAGE of the same samples as in E showing Hsp70 overexpression does not lead to decreased levels of GN-link-aSyn nor aSynGC. F. Quantification of the SDS-PAGE confirms that Hsp70 does not reduce the protein levels of GN-link-aSyn nor aSyn-GC.</p

    aSyn forms oligomers in cell lines of different origin.

    No full text
    <p>GN-link-aSyn and aSyn-GC were co-transfected into HEK, CHO, or MES23.5 cells showing complementation can occur in the different cellular environments provided by each cell line (Scale bar, 50 µm).</p
    corecore